VDM-RS: A visual data mining system for exploring and classifying remotely sensed images
نویسندگان
چکیده
Remotely sensed imagery has become increasingly important in several applications domains, such as environmental monitoring, change detection, fire risk mapping and land use, to name only a few. Several advanced image classification techniques have been developed to analyze such imagery and in particular to improve the accuracy of classifying images in the context of such applications. However, most of the proposed classifiers remain a black box to users, leaving them with little to no means to explore and thus further improve the classification process, in particular for misclassified pixel samples. In this paper, we present the concepts, design and implementation of VDM-RS, a visual data mining system for classifying remotely sensed images and exploring image classification processes. The system provides users with two classes of components. First, visual components are offered that are specific to classifying remotely sensed images and provide traditional interfaces, such as a map view and an error matrix view. Second, the decision tree classifier view provides users with the functionality to trace and explore the classification process of individual pixel samples. This feature allows users to inspect how a sample has been correctly classified using the classifier, but more importantly, it also allows for a detailed exploration of the steps in which a sample has been misclassified. The integration of these features into a coherent, user-friendly system not only helps users in getting more insights into the data, but also to better understand and subsequently improve a classifier for remotely sensed images. We demonstrate the functionality of the system’s components and their interaction for classifying imagery using a hyperspectral image dataset. & 2009 Elsevier Ltd. All rights reserved.
منابع مشابه
A Comparative Study of SVM and RF Methods for Classification of Alteration Zones Using Remotely Sensed Data
Identification and mapping of the significant alterations are the main objectives of the exploration geochemical surveys. The field study is time-consuming and costly to produce the classified maps. Therefore, the processing of remotely sensed data, which provide timely and multi-band (multi-layer) data, can be substituted for the field study. In this study, the ASTER imagery is used for altera...
متن کاملA New GIS based Application of Sequential Technique to Prospect Karstic Groundwater using Remotely Sensed and Geoelectrical Methods in Karstified Tepal Area, Shahrood, Iran
In this research, recognition of karstic water-bearing zones using the management of exploration data in Kal-Qorno valley, situated in the Tepal area of Shahrood, has been considered. For this purpose, the sequential exploration method was conducted using geological evidences and applying remote sensing and geoelectrical resistivity methods in two major phases including the regional and local s...
متن کاملCoastal water quality assessment based on the remotely sensed water quality index using time series of satellite images
This study was conducted with the aim of providing a remotely sensed water quality index in Assaluyeh port using remote sensing technology. so, according to the region conditions, studying of scientific resources and access to satellite data, the parameters of heavymetals, dissolved ions, SST, chlorophyll-a and pH were selected. Then, by reviewing sources, the product MYD091km, MYD021km, MOD02...
متن کاملSpatiotemporal Estimation of PM2.5 Concentration Using Remotely Sensed Data, Machine Learning, and Optimization Algorithms
PM 2.5 (particles <2.5 μm in aerodynamic diameter) can be measured by ground station data in urban areas, but the number of these stations and their geographical coverage is limited. Therefore, these data are not adequate for calculating concentrations of Pm2.5 over a large urban area. This study aims to use Aerosol Optical Depth (AOD) satellite images and meteorological data from 2014 to 2017 ...
متن کاملSpatiotemporal analysis of remotely sensed Landsat time series data for monitoring 32 years of urbanization
The world is witnessing a dramatic shift of settlement pattern from rural to urban population, particularly in developing countries. The rapid Addis Ababa urbanization reflects this global phenomenon and the subsequent socio-economic and environmental impacts, are causing massive public uproar and political instability. The objective of this study was to use remotely sensed Landsat data to iden...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computers & Geosciences
دوره 35 شماره
صفحات -
تاریخ انتشار 2009